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Abstract 

Partial Least Squares (PLS) is a statistical technique that is widely used in the Partial 
Least Squares (PLS) is a popular technique for estimating structural equation models 
with latent variables. It is frequently perceived as an alternative to covariance analysis 
of such models. While its proponents recognize the shortcomings of PLS for testing 
explanatory models in comparison to covariance models, PLS is instead positioned as a 
tool for prediction and argued to be preferable to covariance analysis for this purpose. 
In this paper, we present an initial study that compares the predictive ability of PLS and 
covariance analysis in a range of situations using a simulation study. Our results show 
that PLS does offer some advantages over covariance models, but that these are not the 
ones advocated by PLS proponents.  
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Introduction 

Explanation and prediction are two main purposes of theories and statistical methods (Gregor, 2006). 
Explanation is understood as the identification of causal mechanisms underlying a phenomenon. On the 
statistical level, explanation is perceived to be primarily concerned with testing the faithful representation 
of causal mechanisms by the statistical model and the estimation of true population parameter values 
from samples (Shmueli and Koppius, 2011). Prediction is viewed as the ability to predict values for 
individual cases. While predictive models may be based on causal mechanisms, they need not necessarily 
be (Gregor, 2006). On the statistical level, predictive models may be developed in a more exploratory and 
data-driven way (Shmueli and Koppius, 2011). The aim is not to test whether models accurately represent 
the causal mechanisms, but instead to identify the best way to predict observations for specific cases that 
are similar to those in the sample. Prediction is argued to be an important aspect of information systems 
research (Shmueli and Koppius, 2011). 

Structural equation modeling is an increasingly popular statistical technique that allows researchers to 
represent latent constructs, observations, and their relationship in a single model. The partial least 
squares (PLS) technique treats the latent constructs as weighted composites of the corresponding 
observed variables and estimates the composite model using multiple regression. In contrast, covariance 
analysis estimates the model by minimizing the difference between the model-implied and the observed 
covariance matrices. PLS is often argued to be technique that emphasizes the observed data over the 
theory and has therefore been argued to be preferable to covariance analysis for prediction (Hair, Ringle, 
and Sarstedt, 2011; Reinartz, Haenlein, and Henseler, 2009). In fact, Herman Wold who originally 
developed PLS positioned it as a method for prediction (as quoted in Dijkstra, 1983), and Lohmöller 
(1989), a major contributor to the development of PLS, demonstrated that the population parameter 
estimates produced by the PLS algorithm are biased, in effect acknowledging that PLS should not be used 
for explanation (i.e. the estimation of true, unbiased population parameters) but may instead be more 
useful for prediction.  

This study is of particular interest to Information Systems researchers, as this field is the main user of the 
PLS technique for estimating structural equation models (Rouse and Corbitt, 2008). Many of the major 
developments in the use of PLS have occurred in the IS context (e.g. Chin et al., 2003; Goodhue et al., 
2007; Wetzels et al., 2009). Additionally, a number of recent editorials on PLS in MIS Quarterly highlight 
the important role that PLS plays in the IS discipline (Marcoulides and Saunders, 2006; Marcoulides, 
Chin, and Saunders, 2009; Ringle et al., 2012). The last of these (Ringle et al., 2012) reported 65 studies 
in MIS Quarterly over the period of 2001 to 2011. This is more than three times the combined number of 
PLS studies in the top three marketing journals (JMR, JM, JAMS) in the same period. Ringle et al. (2012) 
also suggest that a focus on prediction is one of the main stated reasons for researchers to adopt PLS over 
other techniques, both in IS as well as the marketing discipline. However, they note that, despite the 
stated predictive aim of many PLS studies, none report appropriate predictive ability metrics. 

In this study, we examine the predictive ability of PLS and compare it to the predictive ability of 
covariance analysis, which is traditionally associated more with explanation and testing rather than with 
prediction. Using a simulation study, we examine the predictive ability of PLS and covariance estimates 
for a range of models under conditions of differing sample sizes, numbers of indicators, and item 
loadings. To our knowledge, this is the first study to provide a systematic evaluation of predictive ability of 
different estimation and prediction methods.  

The remainder of the paper is structured as follows. We next present a brief description of blindfolding, 
the primary and recommended technique to evaluate predictive ability. This is followed by a description 
of the simulation study. We present and discuss the results of that study and conclude the paper with 
recommendations for researchers and an outlook to future research required in this area. 

Evaluating Predictive Ability using Blindfolding 

While in traditional regression models the ��  proportion of explained variance is an indicator of the 
predictive strength of the model, researchers have recently advocated the use of blindfolding for assessing 
the predictive strength of structural equation models (Chin, 2010; Ringle et al., 2012). In blindfolding, the 
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researcher omits a number of observations from the data set, estimates the model parameters, and uses 
the estimated model to predict the omitted observations1.  

Blindfolding can be done on any set of variables. However, the predictive ability of the model typically 
concerns the indicator variables for the endogenous latent variables. Blindfolding proceeds by considering 
a block of N cases and K indicators, e.g. of the indicators of the endogenous latent variables. Beginning 
with the first data point (row 1, column 1) of this block, every k-th observation is omitted where k is the 
omission distance. To estimate the model, the omitted values are typically replaced with the variable 
mean, though other imputation techniques may be used. Based on the estimated model, the estimates for 
the omitted values are compared to the observed values, using the squared difference (E). At the same 
time, the difference between the variable mean (or otherwise imputed values) and the observed values are 
also compared using the squared difference (O). Beginning with the second data point, another set of 
values is omitted and the squared differences are computed. This process is repeated k times. The 
predictive measure for these variables is then calculated as 

�� � 1 �	
∑ 	



∑ �


 

Based on different procedures for predicting observations from the model, one can distinguish 
communality-based and redundancy-based blindfolding, with correspondingly differing values for ����

�  
and ����

�  predictive measures. In communality-based blindfolding, the predicted values are based on the 
estimated composite scores and the factor loadings. For redundancy-based blindfolding, factor loadings 
are also used but the composite scores themselves are predicted from the structural model using the 
estimated multiple regression coefficients. This takes into account the unexplained variance in 
endogenous latent variables. Redundancy-based blindfolding is applicable only to observations of 
indicators of endogenous latent variables, while communality-based blindfolding can be applied to all 
observed variables. 

There are different recommendations for the blindfolding omission distance k in the literature, though 
generally between 5 and 10. The blindfolding distance represents an assumption as to how far out of 
sample the future values are, which are to be predicted. The omission distance indicates how much of the 

sample will be discarded for parameter estimation: For a given omission distance �, a proportion of  1 ��   
of the sample values will be discarded. A small omission distance (e.g. � � 5) will retain relatively less of 
the original sample for the parameter estimation than a large omission distance (e.g. � � 20�. As a result, 
the distributional characteristics of the estimated sample are more likely to differ from those of the 
complete sample for small distances than for large distances. As a consequence, the predicted values for 
small omission distances will be further from the estimating distributional characteristics than for large 
omission distances. Hence, there is no single “correct” omission distance, but only an assumption by the 
researcher how far out of sample the model will be asked to predict. Unfortunately, given the small 
number of predictive studies in information systems (Shmueli and Koppius, 2011), we do not know which 
omission distance represents a typical prediction situation. 

Chin (2010) recommends to use redundancy-based blindfolding to assess the predictive relevance of ones 
“theoretical/structural model” (p. 680) and suggests that a value of �� � 0.5 is indicative of a predictive 
model.  

                                                             

1 Blindfolding should not be confused with Jackknifing. The latter is a resampling technique with the aim 
of computing empirical parameter standard errors or confidence intervals, and is closer to the bootstrap 
than the blindfolding. In contrast to the k-distance blindfolding, where k individual observations are 
removed without regard for the cases they belong to, and are then predicted from the remaining sample, 
the “remove k” jackknife removes k entire cases and re-estimates model parameters but does not predict. 
In contrast to bootstrapping, where a new sample is generated by sampling with replacement from the 
original sample, the jackknife creates each new sample by simply omitting k cases. This makes the 
jackknife deterministic, in contrast to the bootstrap. 
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Study Design 

To compare the predictive ability of models estimated using PLS to those estimated using covariance 
analysis, we used a simulation study. A simulation study is a controlled experiment in which observations 
are generated from a model with parameters fixed by and known to the researcher. The PLS and 
covariance algorithms are then used to estimate the model parameters with the simulated data. The 
advantage of simulation studies is that different conditions of sample size, numbers of indicators for each 
latent variable and loadings can be examined. In effect, it constitutes a controlled experiment. As such, it 
emphasizes internal validity over external validity (i.e. realism).  

In our study, we examine the three models shown in Figures 1, 2 and 3, as these models were used in an 
existing simulation study on PLS (Evermann and Tate, 2010). They represent a range of model complexity 
comparable to actual models in the IS literature. Ringle et al. (2012) report a minimum of 3 and mode of 7 
latent variables per model in the IS literature that uses PLS. Table 1 shows the different conditions for 
which data was generated and model parameters were estimated. These conditions are also representative 
of estimation conditions in the literature; Ringle et al. (2012) report a mean of 3.58 indicators per 
construct and a mean sample size of 238.12. 

 

Figure 1: Model 1 Figure 2: Model 2 Figure 3: Model 3 

 

Table 1: Experimental conditions 

Sample size 100, 250, 750 

Number of indicators per latent construct 3, 5, 7 

Factor loadings (unstandardized) Low (0.75), medium (1), high (1.25) 

 

We conduct our simulations under very conservative conditions. For example, our variables are 
continuous from a multivariate normal distribution, all structural paths are significant, there are no 
formative indicators in the model, and the estimated model was correctly specified 

Data was generated for unstandardized structural regression coefficients of 0.75 and an error variance of 
0.1 for all indicator variables. In summary, this yields 3 x 3 x 3 = 27 conditions for each of the three 
models. For each of these experimental conditions, we estimated 200 samples. For each sample, we 
estimated the model using both PLS and covariance analysis with ML (Maximum Likelihood) estimation. 
We implemented both communality- and redundancy-based blindfolding for PLS and covariance analysis, 
using blindfolding omission distances of � � 5 and  � � 20 for the indicators of all endogenous latent 
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variables. We used mean substitution for estimating the models. Thus, in summary we performed 
27	 � 200	 � �20 � 5� � 135000 PLS and covariance estimations for each of the three models. 

For outcome measures, we computed the mean communality-based and redundancy-based �� for each of 
the 200 samples. We also computed the mean �� proportion of explained variance for all endogenous 
latent constructs. Finally, we wished to compare the model-based prediction methods of SEM and PLS to 
an atheoretical, data-driven prediction method. While a wide range of such methods exist (Hastie et al., 
2009), the EM algorithm is most familiar to researchers as it is frequently used for missing value 
imputation and is available in many statistical packages. This method of predicting missing values does 
not rely on a statistical model, but assumes a multivariate-normal distribution of the observed values. It 
then estimates the means and covariances using the maximum-likelihood method and samples the 
missing values from the resulting multivariate-normal distribution (Schafer, 1997).  

Results and Discussion 

The complete results of our simulation are shown in Tables 2-7 in the Appendix of the paper. We have 
plotted excerpts of our results for model 3 in Figures 4 (mean ��) and Figure 5 (��). Figure 4 shows the 
mean �� values as a function of the estimation mode (PLS or SEM), prediction mode (Communality or 
Redundancy), sample size and number of indicators. The figure shows that the mean �� is always higher 
for SEM-estimated models than for PLS estimated models. In contrast to SEM-estimated models, the 
mean �� for PLS-estimated models increases as the number of indicators increases. Figure 5 shows the �� 
predictive ability metrics, again as a function of the estimation mode (PLS or SEM), prediction mode 
(Communality or Redundancy), sample size and number of indicators. The figure shows that the 
communality-based predictive ability from SEM-estimated models is much lower than for PLS-estimated 
models, and also lower than for redundancy-based prediction. As we did not identify many model-specific 
phenomena, the equivalent figures for the other two models show similar information and are therefore 
not included.  

Our first observation is that, while there are some commonalities between the two blindfolding omission 
distances, many of our results differ between the different omission distances. We present and discuss our 
results accordingly. 

 

Figure 4: Mean  ! for model three as a function of estimation mode (PLS/covariance SEM), 

number of indicators, sample size and (unstandardized) loadings. Omission distance k=5 
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Figure 5: "! for model three as a function of prediction mode (communality/redundancy), 

estimation mode (PLS/covariance SEM), sample size and (unstandardized) loadings. Omission 

distance k=5 

Results independent of omission distance 

A number of observations can be made that are independent of the omission distance. First, for small 
samples (# � 100), communality- and redundancy-based prediction from PLS estimated models generally 
dominates over the same mode of prediction based on covariance-based SEM estimated models. This 
holds for all models, loadings and numbers of indicators. In fact, the communality-based ��  for 
covariance-based SEM models is much lower than that for PLS models, while the redundancy-based �� is 
marginally, but consistently lower by approximately 5%. 

Second, the communality-based ��  for PLS is always larger than the communality-based ��  for the 
covariance SEM analysis, for all models and all experimental conditions. This reflects the known PLS bias 
for overestimating measurement loadings (Lohmöller, 1989). 

Third, prediction based on EM imputation dominates both communality- and redundancy-based 
prediction based on PLS or covariance-SEM estimated models for medium and large sample sizes 
(# � 250, 	# � 750)  for almost all models and experimental conditions.  

Fourth, the redundancy-based ��  for both PLS and covariance-based SEM is always above the 
recommendation of 0.5 for a predictive model (Chin, 2010). It increases with loadings, which is 
unsurprising, as these determine the residual measurement error in the observed variables and therefore 
have a direct impact on the predictive ability of the model. It also increases with the number of indicators. 
Again, this is not surprising as more indicators increase the reliability of the scale and can thus reduce the 
prediction error. In contrast, there is little to no effect of sample size on redundancy-based �� for either 
estimation type. 

Fifth, the communality-based �� for PLS increases with the sample size and loadings. It is easy to see that 
the prediction error is reduced as the loadings are increased, because in that case the measurement error 
is decreased. Moreover, previous research has established that the performance of PLS estimation 
improves with increasing sample size (“consistency-at-large”, Lohmöller, 1989) and the estimated 
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parameter values approach those of covariance estimation in the limit of infinite sample size. The 
communality-based �� for covariance-SEM estimated models does not show these effects. 

Sixth, the mean  �� for PLS is always less than the mean �� for covariance SEM estimation. While most of 
these differences are small (less than 5%), there are a few large differences for low loadings and a small 
number of indicators (up to 15%).  These results are not unexpected, as it is well-known that PLS de-
emphasizes structural estimates, and over-emphasizes measurement loadings (Lohmöller, 1989). In fact, 
in many applications this is argued to be an advantage of PLS over covariance SEM, as it is argued to de-
emphasize the often uncertain theory underlying the statistical model. 

Seventh, as expected, the ��	for the covariance-based SEM estimation is stable across all conditions for all 
models, whereas the ��  for the PLS estimation varies with loadings, sample size, and number of 
indicators. The variation with loadings is a result of the way PLS estimates the weights. In the estimation 
loops, the composite scores are calculated alternatingly based on the structural model and the 
measurement model (“inner” and “outer” estimation, cf. Lohmöller, 1989). Hence, the loadings have a 
strong impact on the estimates in the structural model, thus allowing for a strong influence of the 
observed variables on the structural coefficients and the resulting �� values.  The variations with sample 
size and number of indicators is an example of the consistency-at-large property of PLS estimates, which 
approach those of covariance-based estimation with increasing sample size and number of indicators 
(Lohmöller, 1989). 

Results differing by omission distance 

The main difference between the two blindfolding omission distances examined here is in the 
communality-based �� values. We first discuss the communality-based �� for PLS-based estimation. For 
the small omission distance (� � 5), the communality-based �� is always smaller than the redundancy-
based �� for PLS estimated models. In fact, the communality-based �� for model two is well below the 
recommendation of 0.5 for a predictive model (Chin, 2010). This may be a result of the fact that this 
model has a large number of endogenous latent variables compared to the number of exogenous latent 
variables (Figure 2) whereas the other two models are more balanced. Consequently, a larger proportion 
of the sample is missing during blindfolding. However, for the larger omission distance (� � 20� the 
communality-based �� for PLS estimated models dominates the redundancy-based �� for medium and 
large samples, even for our second model.  

The communality-based �� values for covariance-based SEM estimated models are very low for the small 
omission distance (� � 5) to the point that they may effectively be considered as zero for all models. In 
contrast, for the larger omission distance (� � 20), the covariance-SEM based communality �� is well 
above the recommended value of 0.5 (Chin, 2010) when sample sizes are medium (# � 250) or large 
(# � 750). They remain effectively zero for small samples. However, even in the medium and large sample 
conditions, the covariance-SEM based communality �� is lower than the PLS based communality �� for 
all conditions. As indicated above, this is not entirely surprising, as PLS is argued to overemphasize the 
measurement model loadings compared to covariance-SEM based estimation, and this bias leads to 
increased communality-based predictive ability. 

For the smaller omission distance (� � 5), the redundancy-based prediction from PLS estimated models 
dominates the redundancy-based prediction from covariance-SEM estimated models, except for large 
sample sizes (# � 750) for model three, where the two perform similarly. However, for the large omission 
distance (� � 20), this is the case only for small samples. In contrast, for medium (# � 250) or large 
(# � 750) samples, the redundancy-based �� for covariance-SEM estimated models dominates that for 
PLS estimated models. 

Recommendations and Conclusion 

PLS is frequently used because it is argued to be appropriate for prediction, rather than model testing. A 
recent high-profile editorial in MIS Quarterly (Ringle et al., 2012) calls for increased reporting of 
predictive ability of PLS models, as 15% of PLS studies claim that prediction is an important reason for 
choosing PLS. Moreover, Shmueli and Koppius (2011) have argued for increased emphasis on prediction 
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in IS research. These calls motivated the present study. To our knowledge, this is the first study to provide 
a systematic evaluation of predictive ability of different estimation and prediction methods.  

Our results generally support the claim that PLS is good choice for estimating models for use in 
prediction. Our results also support the specific recommendation by Chin (2010), who suggests that the 
redundancy-based �� is the appropriate metric for assessing the predictive ability of the structural model. 

We were surprised by the good performance of the EM imputation algorithm to recover the blindfolded 
values. This leads us to suggest that, when data are multivariate normal and the emphasis is purely on 
prediction, the observations for which dependent values are to be predicted should simply be treated as 
missing values and EM imputation should be performed; no statistical model is required for this. 
However, this situation is unlikely to occur in practice, where most data are not multivariate normal so 
that the performance of the EM imputation will suffer. While we have no data on how much the predictive 
performance of PLS or covariance-based SEM estimated models will suffer for non-normal data, it would 
be surprising if EM imputation outperformed prediction based on statistical models for realistic data sets. 
However, a wide range of other atheoretical, data-driven predictive techniques exist, with a long history of 
study and use in predictive modeling, data mining, etc. (Hastie et al., 2009). We thus caution researchers 
that, despite our results, PLS path modeling may not be the best predictive technique for any given data 
set. 

Based on our results, we make the following recommendations when structural equation models are 
estimated for predictive purposes: 

• For small sample sizes, we always recommend redundancy-based prediction from PLS estimated 
models. For small samples, this prediction mode dominates covariance-SEM based prediction for 
all experimental conditions and also dominates communality-based prediction for both PLS and 
covariance-based SEM estimated models. 

• For medium and large samples, when prediction is to be made for values relatively close to those 
in the estimation sample, our results suggest that redundancy-based prediction from covariance-
SEM estimated models is in many situations the superior prediction method. If covariance-SEM 
model estimation is not possible, e.g. because of non-linear structural relationships or under-
identification of the model, then communality-based prediction from PLS estimated should be 
used. 

• For medium and large samples, when prediction is to be made for values less close to the 
estimation sample, our results suggest that redundancy-based prediction from PLS estimated 
models is the superior prediction method. Given that the PLS literature recommends blindfolding 
omission distances closer to � � 5 than to � � 20, this should become a standard 
recommendation.  

• When predictive ability is interpreted as the ability to explain variance in the endogenous latent 
variables, rather than the ability to predict individual observations, covariance-based SEM 
estimation should be used. 

However, while these are specific recommendations based on our results, we recommend that, in line with 
the notion that prediction is possible without explanation (Gregor, 2006) and that prediction allows more 
flexible and data-driven approaches than model testing (Shmueli and Koppius, 2011), researchers should 
use both methods of estimation (PLS and covariance-based SEM) and both methods of prediction 
(communality-based and redundancy-based) to explore the best way to predict individual scores from the 
specific model. If prediction is indeed the main aim of the study, the fact that a model shows lack of fit by 
traditional metrics, such as the PLS goodness-of-fit index or the various fit indices for covariance-based 
estimation, is irrelevant. Moreover, to pursue predictive validity, post-hoc model modifications should be 
explored because the bias of significance tests is not a concern in this case. Thus, while PLS may typically 
be the preferred option for prediction, researchers should explore both estimation methods and both 
prediction methods.  

We note a distinct difference between small and large blindfolding omission distances. As we indicated 
earlier, there is not correct value for the omission distance. Instead, the blindfolding omission distance is 
a measure for how far “out of sample” the to be predicted values are. A small omission distance omits a 
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larger proportion of the sample for parameter estimation than a large omission distance. Consequently, a 
small omission distance suggests that the to be predicted values are further from the sample values in 
terms of their distributional characteristics. The “632 bootstrap procedure” (Efron and Tibshirani, 1997; 
Hastie et al., 2009) for cross-validation has been shown to be superior to other cross-validation methods. 
We recommend that PLS researchers investigate the performance of this method and PLS users adopt this 
cross-validation method for future work.  

While this study aimed to investigate the predictive abilities of PLS and covariance-based SEM estimation 
for different modes of prediction (communality- and redundancy-based), our simulations have been 
conducted under very conservative conditions. For example, our variables were continuous from a 
multivariate normal distribution, all structural paths are significant, there were no formative indicators in 
the model, and the model was correctly specified. In practice, it is unlikely that all, or even many, of these 
assumptions are met to the extent they were for this study. Thus, future extensions of this work should 
investigate the predictive performance of PLS and SEM for discrete data (e.g. from Likert scales) and 
varying degrees of skewness and kurtosis of the data. 

Further, it is impossible to even know whether a model is correctly specified in practice, so one should in 
general assume that the estimated model is not the true generating model. While establishing the 
correctness of the model is not a priority from the perspective of prediction that we have assumed here, it 
is known that parameter estimates are biased for misspecified models. These biased estimates will affect 
the predictive ability of the model, but it is unclear what the direction and magnitude of these effects will 
be for the different modes of estimation and prediction. Future research needs to examine predictive 
ability under a wider range conditions. 

In general, while this brief, initial study has shown that PLS may be a more appropriate choice than 
covariance SEM when the goal is prediction, this must be qualified. When the goal is prediction, the 
underlying model is typically not important, and thus the predictive ability of PLS should best be 
compared to other, often atheoretical, prediction techniques, such as canonical regression, kernelized PLS 
regression etc. (Hastie et al., 2009). Generally, any PLS path model will impose constraints on the 
estimation and prediction that are not present when using e.g. a simple, direct PLS or canonical 
regression between independent and dependent variables. McDonald (1996) write with respect to PLS 
prediction that “a path models is … generally subobtimally predictive” and that “if the object of the 
analysis were to predict the response variables, … we cannot do better than to use a multivariate 
regression … or the corresponding canonical variate analysis.” (pg. 266) In contrast, when the correctness 
of the model is important, SEM should be preferred, as PLS cannot test the correctness of the model 
(Evermann and Tate, 2010). 

To conclude, this study contributes the first systematic analysis of predictive ability of different structural 
equation estimation methods and different prediction methods. The resulting recommendations are 
based on strong empirical evidence under a range of different conditions.  

References 

Chin, W.W., Marcolin, B.L. and Newsted, P.R. 2003. “A partial least squares latent variable modeling 
approach for measuring interaction effects: Results from a Monte Carlo simulation study and an 
electronic-mail emotion/adoption study.” Information Systems Research (14:2), 189-217. 

Chin, W.W. 2010. “How to write up and report PLS analyses.” Esposito Vinzi, E. et al. (eds.) Handbook of 
Partial Least Squares. Berlin, Germany: Springer-Verlag, 655-690. 

Dijkstra, T. 1983. “Some comments on maximum-likelihood and partial least squares methods.” Journal 
of Econometrics (22), 67-90. 

Efron, B. and Tibshirani, R. 1997. “Improvements on crossvalidation: The .632+ bootstrap.” Journal of 
the American Statistical Association (92:438), 548-560. 

Evermann, J. and Tate, M. 2010. “Testing models or fitting models? Identifying model misspecifications 
in PLS.” Proceedings of the Proceedings of the 31st International Conference on Information Systems 
(ICIS), St. Louis, MS. 

Goodhue, D., Lewis, W., and Thompson, R. 2007. “Statistical power in analyzing interaction effects: 
Questioning the advantage of PLS with product indicators.” Information Systems Research (18:2), 
211-227. 



Research Methods 
 

10 Thirty Third International Conference on Information Systems, Orlando 2012  
 

Gregor, S. 2006. “The nature of theory in information systems.” MIS Quarterly (30:3), 611-642. 
Hastie, T., Tibshirani, R. and Friedman, J. 2009. The Elements of Statistical Learning: Data Mining, 

Inference, and Prediction. Springer Verlag, Berlin. 
Hair, J.F, Ringle C.M. and Sarstedt, M. 2011. “PLS-SEM: Indeed a silver bullet.” Journal of Marketing 

Theory and Practice (19:2),  139-151. 
Marcoulides, G.A. and Saunders, C. 2006. “PLS: A silver bullet?” MIS Quarterly (30:2), iii-ix. 
Marcoulides, G.A., Chin, W.W. and Saunders, C. 2009. “A critical look at partial least squares modeling.” 

MIS Quarterly (33:1), 171-175. 
McDonald, R.P. 1996. “Path analysis with composite variables.” Multivariate Behavioral Research (31:2), 
239-270. 

Lohmöller, J.B. 1989. Latent Variable Path Modeling with Partial Least Squares. Heidelberg, Germany: 
Physica-Verlag. 

Reinartz, W., Haenlein, M., and Henseler, J. 2009 “An empirical comparison of the efficacy of covariance-
based and variance-based SEM.” International Journal of Research in Marketing (26), 332-344. 

Ringle, C.M., Sarstedt, M., and Straub, D.W. 2012. “A critical look at the use of PLS-SEM in MIS 
Quarterly.” MIS Quarterly (36:1), iii-xiv. 

Rouse, A.C. and Corbitt, B. 2008. “There’s SEM and “SEM”: A critique of the use of PLS regression in 
information systems research.” Proceedings of the 19th Australasian Conference on Information 
Systems, 3-5 December, Christchurch, New Zealand. 

Schafer, J.F. 1997. Analysis of Incomplete Multivariate Data. Boca Raton, FL: CRC Press/Chapman & 
Hall. 

Shmueli, G. and Koppius, O.R. 2011. “Predictive analytics in information systems research.” MIS 
Quarterly (35:3), 553-572. 

Wetzels, M., Odekerken-Schröder, G., and van Oppen, C. 2009. “Using PLS path modeling for assessing 
hierarchical construct models: Guidelines and empirical illustration.” MIS Quarterly (33:1), 177-195. 

  



Evermann & Tate / Comparing Predictive Ability 
 

 Thirty Third International Conference on Information Systems, Orlando 2012 11 
 

Appendix 

The appendix contains the complete results of the simulation study in tabular form. Each row in the table 
represents one of the 27 experimental conditions, The columns Q2C represent the communality-based �� 
(for PLS and covariance-based SEM estimation) and the columns Q2R represent the redundancy-based 
��  (for PLS and covariance-based SEM estimation). The columns ��  represent the mean ��  of the 
endogenous latents (for PLS and covariance-based SEM estimation) and the column EM Imputed 
represents the ��  when the blindfolded values are treated as missing values and imputed by an 
Expectation-Maximization algorithm (Schafer, 1997). 

 

Table 2: Predictive ability results for Model 1 (largest "! value highlighted), k=5 

N I L  Q2C 
(PLS)  

Q2R 
(PLS)  

Q2C 
 (SEM) 

Q2R 
(SEM) 

R2  
(PLS)  

R2 
(SEM) 

EM 
Imputed 

100 3 0.75 0.550 0.723 0.142 0.677 0.831 0.920 0.715 

100 3 1 0.575 0.784 0.105 0.742 0.864 0.918 0.787 

100 3 1.25 0.595 0.822 0.078 0.784 0.885 0.920 0.830 

100 5 0.75 0.557 0.737 0.107 0.702 0.863 0.920 0.710 

100 5 1 0.585 0.798 0.073 0.765 0.886 0.919 0.782 

100 5 1.25 0.596 0.826 0.054 0.795 0.898 0.918 0.821 

100 7 0.75 0.561 0.747 0.083 0.716 0.879 0.920 0.693 

100 7 1 0.587 0.802 0.059 0.771 0.895 0.918 0.775 

100 7 1.25 0.601 0.832 0.042 0.802 0.904 0.919 0.809 

250 3 0.75 0.550 0.718 0.145 0.686 0.829 0.920 0.733 

250 3 1 0.579 0.785 0.102 0.757 0.865 0.919 0.800 

250 3 1.25 0.597 0.822 0.074 0.797 0.885 0.920 0.839 

250 5 0.75 0.558 0.735 0.102 0.712 0.861 0.918 0.743 

250 5 1 0.587 0.797 0.069 0.777 0.886 0.918 0.811 

250 5 1.25 0.601 0.829 0.050 0.810 0.899 0.919 0.841 

250 7 0.75 0.564 0.744 0.080 0.726 0.878 0.919 0.745 

250 7 1 0.589 0.803 0.054 0.785 0.896 0.919 0.813 

250 7 1.25 0.601 0.830 0.038 0.813 0.902 0.917 0.842 

750 3 0.75 0.549 0.715 0.145 0.687 0.827 0.918 0.743 

750 3 1 0.581 0.786 0.102 0.762 0.865 0.918 0.809 

750 3 1.25 0.598 0.821 0.074 0.802 0.884 0.918 0.845 

750 5 0.75 0.559 0.735 0.102 0.717 0.862 0.919 0.758 

750 5 1 0.588 0.797 0.068 0.781 0.886 0.918 0.821 

750 5 1.25 0.602 0.829 0.047 0.816 0.898 0.919 0.851 

750 7 0.75 0.563 0.742 0.079 0.731 0.877 0.918 0.764 

750 7 1 0.590 0.802 0.051 0.790 0.895 0.919 0.824 

750 7 1.25 0.602 0.831 0.035 0.820 0.903 0.918 0.853 
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Table 3: Predictive ability results for Model 2 (largest "! value highlighted), k=5 

N I L Q2C  
(PLS) 

Q2R 
(PLS)  

Q2C (SEM) Q2R 
(SEM) 

R2  
(PLS) 

R2 
(SEM) 

EM 
Imputed 

100 3 0.75 0.298 0.592 0.085 0.551 0.731 0.844 0.602 
100 3 1 0.318 0.697 0.065 0.647 0.783 0.849 0.688 
100 3 1.25 0.327 0.747 0.051 0.696 0.806 0.849 0.740 
100 5 0.75 0.302 0.618 0.063 0.584 0.779 0.849 0.608 
100 5 1 0.319 0.709 0.048 0.666 0.808 0.849 0.688 
100 5 1.25 0.327 0.755 0.037 0.709 0.823 0.850 0.734 
100 7 0.75 0.300 0.621 0.051 0.595 0.795 0.846 0.601 
100 7 1 0.319 0.708 0.037 0.668 0.816 0.845 0.690 
100 7 1.25 0.326 0.757 0.029 0.714 0.830 0.849 0.729 
250 3 0.75 0.291 0.591 0.084 0.564 0.734 0.848 0.607 
250 3 1 0.309 0.690 0.062 0.653 0.781 0.848 0.696 
250 3 1.25 0.319 0.741 0.046 0.703 0.803 0.847 0.741 
250 5 0.75 0.292 0.611 0.058 0.591 0.778 0.848 0.616 
250 5 1 0.310 0.703 0.041 0.673 0.808 0.849 0.701 
250 5 1.25 0.319 0.751 0.031 0.718 0.823 0.849 0.744 
250 7 0.75 0.294 0.620 0.046 0.605 0.798 0.849 0.618 
250 7 1 0.311 0.709 0.032 0.683 0.820 0.849 0.703 
250 7 1.25 0.319 0.752 0.024 0.722 0.829 0.848 0.747 
750 3 0.75 0.288 0.593 0.082 0.570 0.737 0.850 0.612 
750 3 1 0.306 0.692 0.059 0.660 0.783 0.850 0.700 
750 3 1.25 0.315 0.742 0.043 0.708 0.805 0.849 0.746 
750 5 0.75 0.289 0.608 0.057 0.594 0.777 0.848 0.624 
750 5 1 0.307 0.702 0.039 0.678 0.808 0.849 0.706 
750 5 1.25 0.316 0.749 0.028 0.722 0.822 0.849 0.749 
750 7 0.75 0.290 0.616 0.043 0.607 0.796 0.848 0.630 
750 7 1 0.307 0.707 0.029 0.686 0.820 0.850 0.712 
750 7 1.25 0.315 0.752 0.021 0.726 0.829 0.848 0.753 
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Table 4: Predictive ability results for Model 3 (largest "! value highlighted), k=5 

N I L 
Q2C 
(PLS) 

Q2R 
(PLS) 

Q2C 
(SEM) 

Q2R 
(SEM) 

R2  
(PLS) 

R2 
(SEM) 

EM 
Imputed 

100 3 0.75 0.621 0.727 0.109 0.709 0.820 0.908 0.715 

100 3 1 0.650 0.783 0.076 0.766 0.854 0.906 0.782 

100 3 1.25 0.667 0.812 0.056 0.800 0.874 0.907 0.823 

100 5 0.75 0.625 0.732 0.077 0.723 0.854 0.907 0.676 

100 5 1 0.653 0.787 0.054 0.778 0.874 0.905 0.761 

100 5 1.25 0.668 0.816 0.039 0.806 0.887 0.907 0.799 

100 7 0.75 0.630 0.739 0.061 0.735 0.870 0.908 0.614 

100 7 1 0.655 0.792 0.042 0.784 0.886 0.908 0.708 

100 7 1.25 0.669 0.818 0.034 0.812 0.893 0.908 0.758 

250 3 0.75 0.621 0.724 0.107 0.721 0.820 0.907 0.750 

250 3 1 0.651 0.781 0.074 0.780 0.856 0.907 0.812 

250 3 1.25 0.666 0.811 0.052 0.811 0.874 0.907 0.844 

250 5 0.75 0.624 0.729 0.073 0.734 0.852 0.906 0.745 

250 5 1 0.653 0.786 0.049 0.789 0.876 0.907 0.809 

250 5 1.25 0.669 0.816 0.035 0.820 0.888 0.908 0.839 

250 7 0.75 0.626 0.732 0.057 0.741 0.867 0.906 0.738 

250 7 1 0.654 0.788 0.037 0.795 0.884 0.907 0.803 

250 7 1.25 0.669 0.816 0.027 0.821 0.892 0.907 0.836 

750 3 0.75 0.620 0.722 0.107 0.724 0.820 0.908 0.762 

750 3 1 0.651 0.781 0.072 0.785 0.857 0.908 0.821 

750 3 1.25 0.666 0.810 0.051 0.817 0.875 0.907 0.852 

750 5 0.75 0.625 0.729 0.072 0.740 0.853 0.907 0.767 

750 5 1 0.654 0.786 0.046 0.796 0.877 0.908 0.824 

750 5 1.25 0.668 0.813 0.033 0.823 0.887 0.907 0.854 

750 7 0.75 0.627 0.731 0.054 0.746 0.868 0.907 0.768 

750 7 1 0.654 0.786 0.035 0.799 0.884 0.907 0.826 

750 7 1.25 0.668 0.814 0.024 0.826 0.892 0.907 0.854 
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Table 5: Predictive ability results for Model 1 (largest "! value highlighted), k=20 

N I L  Q2C 
(PLS)  

Q2R 
(PLS)  

Q2C 
(SEM) 

Q2R 
(SEM) 

R2  
(SEM)  

R2 
(PLS) 

EM 
Impute

d 
100 3 0.75  0.561   0.722   0.239   0.687   0.921   0.831  0.725 
100 3 1  0.595   0.791   0.186   0.772   0.921   0.865  0.796 
100 3 1.25  0.608   0.822   0.142   0.815   0.918   0.883  0.834 
100 5 0.75  0.569   0.738   0.186   0.727   0.923   0.863  0.719 
100 5 1  0.596   0.799   0.135   0.796   0.918   0.886  0.790 
100 5 1.25  0.614   0.831   0.100   0.832   0.918   0.897  0.828 
100 7 0.75  0.577   0.749   0.151   0.745   0.922   0.878  0.713 
100 7 1  0.601   0.806   0.104   0.805   0.917   0.894  0.782 
100 7 1.25  0.613   0.833   0.076   0.840   0.919   0.903  0.821 
250 3 0.75  0.754   0.719   0.642   0.745   0.919   0.827  0.799 
250 3 1  0.799   0.789   0.636   0.809   0.918   0.866  0.873 
250 3 1.25  0.820   0.821   0.596   0.843   0.919   0.884  0.913 
250 5 0.75  0.772   0.736   0.669   0.768   0.920   0.861  0.812 
250 5 1  0.815   0.798   0.679   0.825   0.919   0.886  0.885 
250 5 1.25  0.836   0.829   0.654   0.853   0.918   0.896  0.922 
250 7 0.75  0.780   0.745   0.674   0.775   0.918   0.879  

See 
note 

250 7 1  0.820   0.802   0.691   0.829   0.918   0.895  

250 7 1.25  0.842   0.833   0.678   0.857   0.918   0.904  

750 3 0.75  0.753   0.716   0.643   0.749   0.918   0.828  0.807 
750 3 1  0.800   0.788   0.636   0.812   0.918   0.865  0.879 
750 3 1.25  0.822   0.821   0.600   0.846   0.918   0.884  0.918 
750 5 0.75  0.773   0.735   0.671   0.771   0.918   0.862  0.824 
750 5 1  0.816   0.797   0.682   0.828   0.919   0.886  0.892 
750 5 1.25  0.837   0.829   0.658   0.857   0.918   0.898  0.927 
750 7 0.75  0.781   0.744   0.676   0.779   0.918   0.878  

See 
note 

750 7 1  0.822   0.803   0.694   0.833   0.918   0.896  

750 7 1.25  0.842   0.832   0.682   0.861   0.918   0.903  

 

Note: The EM imputation did not converge within 20000 iterations. 
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Table 6: Predictive ability results for Model 2 (largest "! value highlighted), k=20 

N I L Q2C  
(PLS) 

Q2R 
(PLS)  

Q2C 
(SEM) 

Q2R 
(SEM) 

R2  
(SEM) 

R2 
(PLS) 

EM 
Impute

d 

100 3 0.75  0.313   0.602   0.160   0.552   0.847   0.735  0.594 

100 3 1  0.331   0.698   0.131   0.654   0.846   0.781  0.684 

100 3 1.25  0.341   0.749   0.103   0.715   0.848   0.804  0.733 

100 5 0.75  0.313   0.616   0.121   0.591   0.846   0.777  0.605 

100 5 1  0.331   0.704   0.096   0.687   0.849   0.807  0.685 

100 5 1.25  0.342   0.754   0.073   0.737   0.850   0.821  0.737 

100 7 0.75  0.314   0.619   0.104   0.613   0.849   0.796  0.607 

100 7 1  0.332   0.707   0.076   0.697   0.847   0.818  0.687 

100 7 1.25  0.341   0.753   0.057   0.745   0.850   0.827  0.734 

250 3 0.75  0.643   0.595   0.554   0.617   0.848   0.735  0.684 

250 3 1  0.697   0.692   0.589   0.699   0.848   0.782  0.790 

250 3 1.25  0.726   0.743   0.583   0.746   0.849   0.803  0.850 

250 5 0.75  0.647   0.607   0.580   0.635   0.848   0.777  0.700 

250 5 1  0.703   0.703   0.628   0.713   0.849   0.807  0.808 

250 5 1.25  0.731   0.750   0.639   0.754   0.848   0.822  0.867 

250 7 0.75  0.651   0.617   0.588   0.643   0.849   0.797  
See 
note 

250 7 1  0.706   0.709   0.641   0.720   0.851   0.819  

250 7 1.25  0.733   0.754   0.659   0.758   0.848   0.829  

750 3 0.75  0.637   0.589   0.558   0.621   0.849   0.735  0.691 

750 3 1  0.695   0.690   0.592   0.703   0.849   0.782  0.794 

750 3 1.25  0.723   0.741   0.586   0.748   0.849   0.805  0.854 

750 5 0.75  0.648   0.611   0.582   0.638   0.849   0.778  0.714 

750 5 1  0.701   0.701   0.630   0.715   0.848   0.808  0.815 

750 5 1.25  0.730   0.750   0.643   0.759   0.850   0.822  0.873 

750 7 0.75  0.650   0.617   0.588   0.644   0.848   0.798  
See 
note 

750 7 1  0.704   0.706   0.643   0.721   0.849   0.819  

750 7 1.25  0.731   0.752   0.663   0.761   0.848   0.830  
 

Note: The EM imputation did not converge within 20000 iterations. 
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Table 7: Predictive ability results for Model 1 (largest "! value highlighted), k=20 

N I L Q2C 
(PLS) 

Q2R 
(PLS) 

Q2C 
(SEM) 

Q2R 
(SEM) 

R2  
(SEM) 

R2 
(PLS) 

EM 
Imputed 

100 3 0.75  0.630  0.726   0.212   0.728   0.907  0.820  0.730 

100 3 1  0.662   0.785   0.153   0.794   0.907   0.856  0.832 

100 3 1.25  0.677   0.814   0.116   0.836   0.909   0.875  0.793 

100 5 0.75  0.636   0.736   0.155   0.749   0.908   0.852  0.701 

100 5 1  0.665   0.790   0.109   0.814   0.909   0.876  0.812 

100 5 1.25  0.678   0.817   0.079   0.842   0.907  0.888  0.772 

100 7 0.75  0.637   0.738   0.124   0.759   0.905  0.870  0.659 

100 7 1  0.664   0.791   0.086   0.817   0.906  0.885  0.784 

100 7 1.25  0.679   0.817   0.063   0.848   0.906  0.893  0.744 

250 3 0.75  0.764   0.724   0.651   0.763   0.906  0.820  0.802 

250 3 1  0.808   0.782   0.632   0.821   0.908   0.857  0.912 

250 3 1.25  0.830   0.813   0.585   0.850   0.908   0.874  0.873 

250 5 0.75  0.769   0.731   0.666   0.777   0.907   0.854  

See note 

250 5 1  0.812   0.787   0.668   0.830   0.907   0.876  

250 5 1.25  0.833   0.814   0.639   0.857   0.907  0.888  

250 7 0.75  0.771   0.732   0.670   0.782   0.908  0.868  

250 7 1  0.814   0.789   0.680   0.832   0.906  0.885  

250 7 1.25  0.834   0.815   0.658   0.858   0.906  0.892  

750 3 0.75  0.763   0.721   0.655   0.768   0.907  0.820  0.813 

750 3 1  0.807   0.781   0.638   0.825   0.907   0.857  0.918 

750 3 1.25  0.829   0.810   0.591   0.854   0.907   0.875  0.880 

750 5 0.75  0.769   0.729   0.670   0.781   0.907   0.854  

See note 

750 5 1  0.811   0.785   0.671   0.833   0.907   0.877  

750 5 1.25  0.832   0.813   0.641   0.860   0.907   0.887  

750 7 0.75  0.770   0.731   0.672   0.785   0.908  0.868  

750 7 1  0.813   0.788   0.684   0.837   0.907  0.885  

750 7 1.25  0.834   0.815   0.663   0.862   0.906  0.893  

 

Note: The EM imputation did not converge within 20000 iterations. 


